
econpizza
Release 0.6.3

Gregor Boehl

Apr 20, 2024

USER GUIDE

1 Overview: Econpizza 3

2 How to cite 5

3 Installation 7

4 Specifying models 9
4.1 The YAML file . 9
4.2 YAML: representative agent models . 9
4.3 YAML: heterogeneous agent models . 11
4.4 Model parsing . 14

5 The steady state 15

6 Nonlinear simulations 17

7 Under the hood 21

8 Quickstart 25

9 RANK Tutorial 29

10 One-Asset HANK Tutorial 39

11 Two-Asset-HANK Tutorial 47

Index 51

i

ii

econpizza, Release 0.6.3

This document is automatically created by sphinx, the Python documentation generator. It is synced with the online
package documentation that is hosted at Read the Docs.

USER GUIDE 1

https://www.sphinx-doc.org/en/master/index.html
https://econpizza.readthedocs.io

econpizza, Release 0.6.3

2 USER GUIDE

CHAPTER

ONE

OVERVIEW: ECONPIZZA

Econpizza is a framework to solve and simulate fully nonlinear perfect foresight models, with or without heterogeneous
agents. The package implements the solution method proposed in HANK on Speed: Robust Nonlinear Solutions
using Automatic Differentiation (Gregor Boehl, 2023, SSRN No. 4433585). It allows to specify and solve nonlinear
macroeconomic models quickly in a simple, high-level fashion.

The package builds heavily on automatic differentiation via JAX. A central philosophy is to consequently separate the
low-level routines for model solution (which is what happens under the hood) from model specification (via a yaml
file) and model analysis (what the user does with the model).

The package can solve nonlinear models with heterogeneous households or firms with one or two assets and portfolio
choice. Steady state and nonlinear impulse responses (including, e.g., the ZLB) can typically be found within a few
seconds. It not only allows to study the dynamics of aggregate variables, but also the complete nonlinear transition
dynamics of the cross-sectional distribution of assets and disaggregated objects. Routines for models with a repre-
sentative agents are also provided. These are faster and more reliable than the extended path method in dynare due
to the use of automatic differentiation for the efficient Jacobian decompositions during each Newton-step. Nonlinear
perfect-foresight transition dynamics can - even for large-scale nonlinear models with several occassionally binding
constraints - be computed in less than a second.

3

https://gregorboehl.com/live/hank_speed_boehl.pdf
https://gregorboehl.com/live/hank_speed_boehl.pdf
https://en.wikipedia.org/wiki/Automatic_differentiation
https://jax.readthedocs.io/en/latest/notebooks/quickstart.html

econpizza, Release 0.6.3

4 Chapter 1. Overview: Econpizza

CHAPTER

TWO

HOW TO CITE

Please cite with

@article{boehl2023goodpizza,
title = {HANK on Speed: Robust Nonlinear Solutions using Automatic␣

→˓Differentiation},
author = {Boehl, Gregor},
journal = {Available at SSRN 4433585},
year = {2023}

}

5

econpizza, Release 0.6.3

6 Chapter 2. How to cite

CHAPTER

THREE

INSTALLATION

The package is under active development. Stable releases can be installed from the official Python repositories, which
are updated frequently.

Installing the repository version from PyPi is as simple as typing

pip install econpizza

in your terminal or Anaconda Prompt.

The current version is supporting Python versions 3.9 to 3.11 on Windows, Mac and Linux. The changelog and release
history can be found on GitHub.

7

https://pypi.org/project/econpizza/
https://github.com/gboehl/econpizza/releases
https://github.com/gboehl/econpizza/releases

econpizza, Release 0.6.3

8 Chapter 3. Installation

CHAPTER

FOUR

SPECIFYING MODELS

Models are specified in a YAML file, which uses the YAML markup language. The YAML format is widely used due
to its intuitive handling, for example for configuration files or in applications where data is being stored or transmitted
which should be human readable. For general information about the format and its syntax see Wikipedia.

The YAML file contains all relevant information from model equations, variable declarations and steady state values.
Models specified as a YAML files can be parsed into a econpizza.PizzaModel using econpizza.parse() or
econpizza.load(). An instance of econpizza.PizzaModel holds all the relevant information and functionality of
the model.

4.1 The YAML file

The YAML files follow a simple structure:

1. list all variables, parameters and shocks

2. provide the nonlinear equations. Note that each equation starts with a ~.

3. define the values of the parameters and fixed steady state values in the steady_state section

4. optionally provide auxiliary equations that are not directly part of the nonlinear system

5. optionally provide initial guesses for all other steady state values and parameters

I will first briefly discuss the YAML of the small scale representative agents NK model from the quickstart tutorial and
then turn to a more complex HANK model. A collection of examples is provided with the package.

4.2 YAML: representative agent models

The GitHub version of the YAML file for the small scale NK model can be found here. The first block (variables
and shocks) is self explanatory:

variables: [y, c, pi, r, rn, beta, w, chi]
shocks: [e_beta]

Note that it is not necessary to define shocks. You can also simply set the initial values of any (exogenous) state.

parameters: [theta, psi, phi_pi, phi_y, rho, h, eta, rho_beta, chi]

Use the parameters block to define any parameters. Parameters are treated the same as variables, but they are time
invariant. During steady state search they are treated exactly equally. For this reason their values are provided in the
steady_state block.

9

https://en.wikipedia.org/wiki/YAML
https://github.com/gboehl/econpizza/blob/master/econpizza/examples/nk.yml
https://github.com/gboehl/econpizza/tree/master/econpizza/examples
https://github.com/gboehl/econpizza/blob/master/econpizza/examples/nk.yml

econpizza, Release 0.6.3

definitions: |
from jax.numpy import log, maximum

The second block (definitions) defines general definitions and imports, which are available at all stages.

equations:
~ w = chi*(c - h*cLag)*y**eta # labor supply
~ 1 = r*betaPrime*(c - h*cLag)/(cPrime - h*c)/piPrime # euler equation
~ psi*(pi/piSS - 1)*pi/piSS = (1-theta) + theta*w + psi*betaPrime*(c-h*cLag)/(cPrime-

→˓h*c)*(piPrime/piSS - 1)*piPrime/piSS*yPrime/y # Phillips curve
~ c = (1-psi*(pi/piSS - 1)**2/2)*y # market clearing
~ rn = (rSS*((pi/piSS)**phi_pi)*((y/yLag)**phi_y))**(1-rho)*rnLag**rho # monetary␣

→˓policy rule
~ r = maximum(1, rn) # zero lower bound on nominal rates
~ log(beta) = (1-rho_beta)*log(betaSS) + rho_beta*log(betaLag) + e_beta # exogenous␣

→˓discount factor shock

equations. The most central part of the yaml. Here you define the model equations, which will then be parsed such
that each equation prefixed by a ~ must hold. Use xPrime for variable x in t+1 and xLag for t-1. Access steady-
state values with xSS. You could specify a representative agent model with just stating the equations block (additional
to variables). Importantly, equations are not executed subsequently but simultaneously! Note that you need one
equation for each variable defined in variables.

steady_state:
fixed_values:

parameters
theta: 6. # demand elasticity
psi: 96 # price adjustment costs
phi_pi: 4 # monetary policy rule coefficient #1
phi_y: 1.5 # monetary policy rule coefficient #2
rho: .8 # interest rate smoothing
h: .44 # habit formation
eta: .33 # inverse Frisch elasticity
rho_beta: .9 # autocorrelation of discount factor shock

steady state values
beta: 0.9984
y: .33
pi: 1.02^.25

init_guesses: # the default initial guess is always 1.1
chi: 6

Finally, the steady_state block allows to fix parameters and, if desired, some steady state values, and provide initial
guesses for others. Note that the default initial guess for any variable/parameter not specified here will be 1.1.

10 Chapter 4. Specifying models

econpizza, Release 0.6.3

4.3 YAML: heterogeneous agent models

Let us have a look of the YAML of a hank model we will discuss in the tutorial. The GitHub version of the file (link)
also contains exhaustive additional comments. The first line reads:

functions_file: 'hank_functions.py'

The relative path to a functions-file, which may provide additional functions. The GitHub version of the functions file
for this model can be found here. In this example, the file defines the functions transfers, wages, hh, labor_supply
and hh_init.

definitions: |
from jax.numpy import log, maximum
from econpizza.tools import percentile, jax_print

General definitions and imports (as above). These are available during all three stages (decisions, distributions, equa-
tions). We will use the percentile function to get some distributional statistics. jax_print is a JAX-jit-able print
function that can be used during call stages for debugging.

variables: [div, y, y_prod, w, pi, R, Rn, Rr, Rstar, tax, z, beta, C, n, B, Top10C,␣
→˓Top10A]

All the aggregate variables that are being tracked on a global level. If a variable is not listed here, you will not be able
to recover it later. Since these are aggregate variables, they have dimensionality one.

parameters: [sigma_c, sigma_l, theta, psi, phi_pi, phi_y, rho, rho_beta, rho_r, rho_z]
shocks: [e_beta, e_rstar, e_z]

Define the model parameters and shocks, as above.

distributions:
the name of the first distribution
dist:
ordering matters. The ordering here is corresponds to the shape of the axis of the␣

→˓distribution
the naming of the dimensions (skills, a) is arbitrary
skills:
first dimension
type: exogenous_rouwenhorst
rho: 0.966
sigma: 0.6
n: 4

a:
second dimension. Endogenous distribution objects require inputs from the␣

→˓decisions stage. An object named 'a' assumes that the decisions stage returns a␣
→˓variable named 'a'

type: endogenous_log
min: 0.0
max: 50
n: 50

The distributions block. Defines a distribution (here dist) and all its dimensions. The information provided here is
used to construct the distribution-forward-functions. If this is not supplied, econpizza assumes that you are providing
a representative agent model.

4.3. YAML: heterogeneous agent models 11

https://github.com/gboehl/econpizza/blob/master/econpizza/examples/hank_with_comments.yml
https://github.com/gboehl/econpizza/blob/master/econpizza/examples/hank_functions.py

econpizza, Release 0.6.3

Exogenous grids are grids for idiosyncratic shocks. A grid type “exogenous_rouwenhorst” requires the parameters
rho, sigma and n. Alternatively, a grid type “exogenous_generic” only needs n and expects the grid variable and the
transition matrix to be defined somewhere else.

Endogenous grids are grids for idiosyncratic state variables. A grid type “exogenous_log” requires the parameters min,
max and n. Based on these, a log grid will be created. Alternatively, a grid type “endogenous_generic” only needs n
and expects the grid variable to be defined somewhere else.

decisions:
define the multidimensional input "WaPrime", in addition to all aggregated variables␣

→˓(defined in 'variables')
inputs: [WaPrime]
calls executed during the decisions stage
calls: |
these functions are defined in functions_file
tfs = transfers(skills_stationary, div, tax, skills_grid)
WaPrimeExp = skills_transition @ WaPrime
Wa, a, c = egm_step(WaPrimeExp, a_grid, skills_grid, w, n, tfs, Rr, beta, sigma_c,␣

→˓sigma_l)
the 'outputs' values are stored for the following stages
outputs: [a,c]

The decisions block. Only relevant for heterogeneous agents models. It is important to correctly specify the dynamic
inputs (here: marginals of the value function) and outputs, i.e. those variables that are needed as inputs for the distri-
bution stage. Note that calls are evaluated one after another.

aux_equations: |
`dist` here corresponds to the dist *at the beginning of the period*
aggr_a = jnp.sum(dist*a, axis=(0,1))
aggr_c = jnp.sum(dist*c, axis=(0,1))
calculate consumption and wealth share of top-10%
top10c = 1 - percentile(c, dist, .9)
top10a = 1 - percentile(a, dist, .9)

Auxiliary equations. This again works exactly as for the representative agent model. These are executed before the
equations block, and can be used for all sorts of definitions that you may not want to keep track of. For heterogeneous
agents models, this is a good place to do aggregation. Auxiliary equations are also executed subsequently.

The distribution (dist) corresponds to the distribution at the beginning of the period, i.e. the distribution from last
period. This is because the outputs of the decisions stage correspond to the asset holdings (on grid) at the beginning
of the period, while the distribution calculated from the decision outputs holds for the next period.

final/main stage: aggregate equations
equations:

definitions
~ C = aggr_c
~ Top10C = top10c
~ Top10A = top10a

firms
~ n = y_prod/z # production function
~ div = -w*n + (1 - psi*(pi/piSS - 1)**2/2)*y_prod # dividends
~ y = (1 - psi*(pi/piSS - 1)**2/2)*y_prod # "effective" output
~ psi*(pi/piSS - 1)*pi/piSS = (1-theta) + theta*w + psi*piPrime/R*(piPrime/piSS -␣

→˓1)*piPrime/piSS*y_prodPrime/y_prod # NKPC
(continues on next page)

12 Chapter 4. Specifying models

econpizza, Release 0.6.3

(continued from previous page)

government
~ tax = (Rr-1)*BLag # balanced budget
~ Rr = RLag/pi # real ex-post bond return
~ Rn = (Rstar*((pi/piSS)**phi_pi)*((y/yLag)**phi_y))**(1-rho)*RnLag**rho # MP rule␣

→˓on shadow nominal rate
~ R = maximum(1, Rn) # ZLB

clearings
~ C = y # market clearing
~ B = aggr_a # bond market clearing
~ n**sigma_l = w # labor market clearing

exogenous
~ beta = betaSS*(betaLag/betaSS)**rho_beta*exp(e_beta) # exogenous beta
~ Rstar = RstarSS*(RstarLag/RstarSS)**rho_r*exp(e_rstar) # exogenous rstar
~ z = zSS*(zLag/zSS)**rho_z*exp(e_z) # exogenous technology

Equations. This also works exactly as for representative agents models.

steady_state:
fixed_values:

parameters:
sigma_c: 2 # intertemporal elasticity of substitution
sigma_l: 2 # inverse Frisch elasticity of labour supply
theta: 6. # elasticity of substitution
psi: 60. # parameter on the costs of price adjustment
phi_pi: 1.5 # Taylor rule coefficient on inflation
phi_y: 0.1 # Taylor rule coefficient on output
rho: 0.8 # persistence in (notional) nominal interest rate
rho_beta: 0.9 # persistence of discount factor shock
rho_r: 0.9 # persistence of MP shock
rho_z: 0.9 # persistence of technology shocks

steady state
y: 1.0 # effective output
y_prod: 1.0 # output
C: 1.0 # consumption
pi: 1.0 # inflation
beta: 0.98 # discount factor
B: 5.6 # bond supply
definitions can be recursive: theta is defined above
w: (theta-1)/theta # wages
n: w**(1/sigma_l) # labor supply
div: 1 - w*n # dividends
z: y/n # technology

init_guesses:
Rstar: 1.002 # steady state target rage
Rr: Rstar # steady state real rage
Rn: Rstar # steady state notional rage
R: Rstar # steady state nominal rage

(continues on next page)

4.3. YAML: heterogeneous agent models 13

econpizza, Release 0.6.3

(continued from previous page)

tax: 0.028
WaPrime: egm_init(a_grid, skills_stationary)

The steady state block. fixed_values are those steady state values that are fixed ex-ante. init_guesses are initial
guesses for steady state finding. Values are defined from the top to the bottom, so it is possible to use recursive
definitions, such as n: w**frisch.

Note that for heterogeneous agents models it is required that the initial value of inputs to the decisions-stage are given
(here WaPrime).

Note: Econpizza is written in JAX, which is a machine learning framework for Python developed by Google. JAX
provides automatic differentiation and just-in-time compilation (“jitting”), which makes the package fast and robust.
However, running jitted JAX code brings along a few limitations. Check the common gotchas in JAX for details.

4.4 Model parsing

Models specified as a YAML files can be parsed and loaded using econpizza.parse() and econpizza.load().

econpizza.parse(mfile)
Parse model dictionary from yaml file. This can be desirable if values should be exchanged before loading the
model.

Parameters
mfile (string) – path to a yaml file to be parsed

Returns
mdict – the parsed yaml as a dictionary

Return type
dict

This returns a dictionary containing all the informations provided in the YAML file. Parsing before loading allows to
change some features of the model manually. The dictionary can then be forwarded to econpizza.load():

econpizza.load(model_ref, raise_errors=True, verbose=True)
Load a model from a dictionary or a YAML file.

Parameters

• model_ref (dict or string) – either a dictionary or the path to a YAML file to be parsed

• raise_errors (bool, optional) – whether to raise errors while checking. False will let
the model fail siliently for debugging. Defaults to True

• verbose (bool, optional) – inform that parsing is done. Defaults to True

Returns
model – The parsed model

Return type
PizzaModel

If desired, econpizza.load() can also parse the YAML-file directly. The function then returns an instance of
econpizza.PizzaModel, which holds all the relevant information and functionality of the model:

class econpizza.PizzaModel(mdict, *args, **kwargs)
Base class for models. Contains all necessary methods and informations.

14 Chapter 4. Specifying models

https://jax.readthedocs.io
https://jax.readthedocs.io/en/latest/notebooks/Common_Gotchas_in_JAX.html

CHAPTER

FIVE

THE STEADY STATE

The steady state search can be evoked by calling the function econpizza.PizzaModel.solve_stst() documented
below. The function collects all available information from steady_state key of the YAML and attempts to find a
set of variables and parameters that satisfies the aggregate equations using the routine outlined in the paper.

Upon failure, the function tries to be as informative as possible. If the search is not successful, a possible path to find the
error is to set the function’s keyword argument raise_errors to False. The function then raises a warning instead
of failing with an exception, and returns a dictionary containing the results from the root finding routine, such as, e.g.
the last Jacobian matrix.

Note: A classic complaint is “The Jacobian contains NaNs”. This is usually due to numerical errors somewhere
along the way. While the package tries to provide more information about where the error occurred, a good idea is to
follow JAX’s hints on how to debug NaNs.

Tip:

• A common gotcha for heterogeneous agent models is that the distribution contains negative values. The routine
will be informative about that. This is usually due to rather excessive interpolation outside the grid and can often
be fixed by using a grid with larger minimum/maximum values.

• The steady state procedure is based on the pseudoinverse of the Jacobian. If the procedure fails, it will try to tell
you the rank of the Jacobian and the number of degrees of freedom. More degrees of freedom than the Jacobian
rank normally implies that you should fix more steady state values and vice versa.

• If the desired precision is not reached, the error message will tell you in which equation the maxi-
mum error did arise. You can use the equations key to get the list of equations (as strings), e.g.
print(model['equations'][17]) to get the equation with index 17.

econpizza.PizzaModel.solve_stst(self, tol=1e-08, maxit=15, tol_backwards=None, maxit_backwards=2000,
tol_forwards=None, maxit_forwards=5000, force=False,
raise_errors=True, check_rank=False, verbose=True, **newton_kwargs)

Solves for the steady state.

Parameters

• tol (float, optional) – tolerance of the Newton method, defaults to 1e-8

• maxit (int, optional) – maximum of iterations for the Newton method, defaults to 15

• tol_backwards (float, optional) – tolerance required for backward iteration. Defaults
to tol

• maxit_backwards (int, optional) – maximum of iterations for the backward iteration.
Defaults to 2000

15

https://jax.readthedocs.io/en/latest/notebooks/Common_Gotchas_in_JAX.html#debugging-nans
https://en.wikipedia.org/wiki/Moore%E2%80%93Penrose_inverse

econpizza, Release 0.6.3

• tol_forwards (float, optional) – tolerance required for forward iteration. Defaults to
tol*1e-2

• maxit_forwards (int, optional) – maximum of iterations for the forward iteration. De-
faults to 5000

• force (bool, optional) – force recalculation of steady state, even if it is already evalu-
ated. Defaults to False

• raise_errors (bool, optional) – raise an error if Newton method does not converge.
Useful for debuggin models. Defaults to True

• check_rank (bool, optional) – force checking the rank of the Jacobian, even if the New-
ton method was successful. Defualts to False

• verbose (bool, optional) – level of verbosity. Defaults to True

• newton_kwargs (keyword arguments) – keyword arguments passed on to the Newton
method

Returns
rdict – a dictionary containing information about the root finding result. Note that the results
are added to the model (PizzaModel instance) automatically, rdict is hence only useful for model
debugging.

Return type
dict

16 Chapter 5. The steady state

CHAPTER

SIX

NONLINEAR SIMULATIONS

The main functionality of nonlinear simulations is provided by the function econpizza.PizzaModel.find_path()
The main arguments are either shock or init_state, which allows to specify an economic shock as a tuple of the
shock name (as specified in shocks in the YAML) and the size of the shock, or a vector of initial states, respectively.
The function econpizza.PizzaModel.get_distributions() allows to retrieve the full nonlinear sequence of the
distribution.

Note: All numerical methods are subject to numerical errors. To reduce these, you can decrease the numerical
tolerance tol. However, this should not be below the tolerance level used for the steady state search.

Hint: A sufficient condition for convergence of the solution routine is that the generalized eigenvalues of the
sequence space Jacobian and its steady-state pendant are all positive.1 If the procedure does not converge, the
use_solid_solver=True flag can be used to check if the model solves when using a conventional Newton method
with the true Jacobian (this may take quite a while).

econpizza.PizzaModel.find_path(self, shock=None, init_state=None, init_dist=None, pars=None,
horizon=200, use_solid_solver=False, skip_jacobian=False, verbose=True,
raise_errors=True, **newton_args)

Find the expected trajectory given an initial state.

Parameters

• shock (tuple, optional) – shock in period 0 as in (shock_name_as_str, shock_size)

• init_state (array, optional) – initial state, defaults to the steady state values

• init_dist (array, optional) – initial distribution, defaults to the steady state distribu-
tion

• pars (dict, optional) – alternative parameters. Warning: do only change those param-
eters that are invariant to the steady state.

• horizon (int, optional) – number of periods until the system is assumed to be back in
the steady state. Defaults to 200

• use_solid_solver (bool, optional) – calculate the full jacobian and use a standard
Newton method. Defaults to False

• skip_jacobian (bool, optional) – whether to skip the calculation of the steady state
sequence space Jacobian. If True, the last cached Jacobian will be used. Defaults to False

• verbose (bool, optional) – degree of verbosity. 0/False is silent. Defaults to False

1 Unfortunately, this is prohibitory expensive to check as it would require to calculate the full sequence space Jacobian and its eigenvalues.

17

https://en.wikipedia.org/wiki/Eigendecomposition_of_a_matrix#Generalized_eigenvalue_problem

econpizza, Release 0.6.3

• raise_errors (bool, optional) – whether to raise errors as exceptions, or just inform
about them. Defaults to True

• newton_args (optional) – any additional arguments to be passed on to the Newton solver
(see the documentations of the solvers)

Returns

• x (array) – array of the trajectory

• flag (bool) – Error flag. Returns False if the solver was successful, otherwise returns True

If the model has heterogeneous agents, the routine will automatically compute the steady state sequence space Jacobian.
This can be skipped using the skip_jacobian flag.

Any additional argument will be passed on to the specific Newton method. For models with heterogeneous agents this
is econpizza.utilities.newton.newton_for_jvp():

econpizza.utilities.newton.newton_for_jvp(jvp_func, jacobian, x_init, verbose, tol=1e-08, maxit=20,
nsteps=30, factor=1.5)

Newton solver for heterogeneous agents models as described in the paper.

Parameters

• tol (float, optional) – tolerance of the Newton method, defaults to 1e-8

• maxit (int, optional) – maximum of iterations for the Newton method, defaults to 20

• nsteps (int, optional) – number of function evaluations per Newton iteration, defaults
to 30

• factor (float, optional) – dampening factor (gamma in the paper), Defaults to 1.5

For models with representative agents, the Newton method is econpizza.utilities.newton.
newton_for_banded_jac():

econpizza.utilities.newton.newton_for_banded_jac(jav_func, nvars, horizon, X, shocks, verbose,
maxit=30, tol=1e-08)

Newton solver for representative agents models.

Parameters

• tol (float, optional) – tolerance of the Newton method, defaults to 1e-8

• maxit (int, optional) – maximum of iterations for the Newton method, defaults to 20

If use_solid_solver is set to True, the Newton method newton_jax_jit from the grgrjax package is used.

The function econpizza.PizzaModel.get_distributions() allows to retrieve the sequence of distributions and
decision variables. To that end it requires the shocks and initial distribution together with the trajectory of aggregated
variables as input.

econpizza.PizzaModel.get_distributions(self, trajectory, init_dist=None, shock=None, pars=None)
Get all disaggregated variables for a given trajectory of aggregate variables.

Note that the output objects do, other than the result from find_path with stacking, not include the time-T objects
and that the given distribution is as from the beginning of each period.

Parameters

• trajectory (array) – a _full_ trajectory of aggregate variables

• init_dist (array, optional) – the initial distribution. Defaults to the steady state dis-
tribution

18 Chapter 6. Nonlinear simulations

https://grgrjax.readthedocs.io/en/latest/#grgrjax.newton_jax_jit
https://grgrjax.readthedocs.io

econpizza, Release 0.6.3

• shock (array, optional) – shock in period 0 as in (shock_name_as_str, shock_size).
Defaults to no shock

Returns
rdict – a dictionary of the distributions

Return type
dict

19

econpizza, Release 0.6.3

20 Chapter 6. Nonlinear simulations

CHAPTER

SEVEN

UNDER THE HOOD

The functional representations of the economic model are written dynamically during parsing/loarding (in econpizza/
parser/__init__.py).

[1]: import econpizza as ep
example_hank = ep.examples.hank

[2]: mod = ep.load(example_hank)

WARNING:jax._src.xla_bridge:No GPU/TPU found, falling back to CPU. (Set TF_CPP_MIN_LOG_
→˓LEVEL=0 and rerun for more info.)

(load:) Parsing done.

The model instance is a dictionary, containing all the informations of the model. For instance, it contains the dynami-
cally created functions as strings:

[3]: mod['func_strings'].keys()

[3]: dict_keys(['func_backw', 'func_eqns'])

The function func_backw corresponds to function 𝑊 (·) from the paper and func_eqns is 𝑓(·). The other functions
are static.

Lets inspect 𝑓 :

[4]: print(mod['func_strings']['func_eqns'])

def func_eqns(XLag, X, XPrime, XSS, shocks, pars, distributions=[], decisions_
→˓outputs=[]):

(BLag, betaLag, CLag, divLag, nLag, piLag, RLag, RnLag, RrLag, RstarLag, taxLag,␣
→˓Top10ALag, Top10CLag, wLag, yLag, y_prodLag, zLag,) = XLag

(B, beta, C, div, n, pi, R, Rn, Rr, Rstar, tax, Top10A, Top10C, w, y, y_prod, z,) = X

(BPrime, betaPrime, CPrime, divPrime, nPrime, piPrime, RPrime, RnPrime, RrPrime,␣
→˓RstarPrime, taxPrime, Top10APrime, Top10CPrime, wPrime, yPrime, y_prodPrime, zPrime,)␣
→˓= XPrime

(BSS, betaSS, CSS, divSS, nSS, piSS, RSS, RnSS, RrSS, RstarSS, taxSS, Top10ASS,␣
→˓Top10CSS, wSS, ySS, y_prodSS, zSS,) = XSS

(continues on next page)

21

econpizza, Release 0.6.3

(continued from previous page)

(sigma_c, sigma_l, theta, psi, phi_pi, phi_y, rho, rho_beta, rho_r, rho_z,) = pars

(e_beta, e_rstar, e_z,) = shocks

(dist,) = distributions

(a, c,) = decisions_outputs

NOTE: summing over the first two dimensions e and a, but not the time dimension␣
→˓(dimension 2)
`dist` here corresponds to the dist *at the beginning of the period*
aggr_a = jnp.sum(dist*a, axis=(0,1))
aggr_c = jnp.sum(dist*c, axis=(0,1))
calculate consumption and wealth share of top-10%
top10c = 1 - percentile(c, dist, .9)
top10a = 1 - percentile(a, dist, .9)

root_container0 = C - (aggr_c)
root_container1 = Top10C - (top10c)
root_container2 = Top10A - (top10a)
root_container3 = n - (y_prod/z)
root_container4 = div - (-w*n + (1 - psi*(pi/piSS - 1)**2/2)*y_prod)
root_container5 = y - ((1 - psi*(pi/piSS - 1)**2/2)*y_prod)
root_container6 = psi*(pi/piSS - 1)*pi/piSS - ((1-theta) + theta*w + psi*piPrime/
→˓R*(piPrime/piSS - 1)*piPrime/piSS*y_prodPrime/y_prod)
root_container7 = tax - ((Rr-1)*BLag)
root_container8 = Rr - (RLag/pi)
root_container9 = Rn - ((Rstar*((pi/piSS)**phi_pi)*((y/yLag)**phi_y))**(1-
→˓rho)*RnLag**rho)
root_container10 = R - (maximum(1, Rn))
root_container11 = C - (y)
root_container12 = B - (aggr_a)
root_container13 = n**sigma_l - (w)
root_container14 = beta - (betaSS*(betaLag/betaSS)**rho_beta*exp(e_beta))
root_container15 = Rstar - (RstarSS*(RstarLag/RstarSS)**rho_r*exp(e_rstar))
root_container16 = z - (zSS*(zLag/zSS)**rho_z*exp(e_z))

return jnp.array([root_container0, root_container1, root_container2, root_container3,␣
→˓root_container4, root_container5, root_container6, root_container7, root_container8,␣
→˓root_container9, root_container10, root_container11, root_container12, root_
→˓container13, root_container14, root_container15, root_container16]).T.ravel()

This function is then automatically compiled and the callable can be found in model['context']:

[5]: mod['context']['func_eqns']

[5]: <function econpizza.parser.func_eqns(XLag, X, XPrime, XSS, shocks, pars,␣
→˓distributions=[], decisions_outputs=[])>

The model['context'] itself contans the name space in which all model functions and definitions are evaluated.
This may be useful for debugging:

[6]: mod['context'].keys()

22 Chapter 7. Under the hood

econpizza, Release 0.6.3

[6]: dict_keys(['__name__', '__doc__', '__package__', '__loader__', '__spec__', '__path__', '_
→˓_file__', '__cached__', '__builtins__', 'yaml', 're', 'os', 'sys', 'tempfile', 'jax',
→˓'jaxlib', 'jnp', 'iu', 'deepcopy', 'copy', 'getmembers', 'isfunction', 'jax_print',
→˓'het_agent_base_funcs', 'build_functions', 'write_dynamic_functions', 'func_forw_
→˓generic', 'func_forw_stst_generic', 'compile_func_basics_str', 'compile_backw_func_str
→˓', 'get_forw_funcs', 'compile_eqn_func_str', 'checks', 'func_pre_stst', 'check_if_
→˓defined', 'check_dublicates', 'check_determinancy', 'check_initial_values', 'check_
→˓shapes', 'check_if_compiled', 'grids', 'dists', 'interp', 'cached_mdicts', 'cached_
→˓models', 'd2jnp', '_load_as_module', 'parse', '_eval_strs', '_parse_external_functions_
→˓file', '_initialize_context', '_initialize_cache', '_load_external_functions_file', '_
→˓compile_init_values', '_define_subdict_if_absent', '_define_function', '_get_pre_stst_
→˓mapping', 'compile_stst_inputs', 'load', 'log', 'exp', 'sqrt', 'max', 'min', 'egm_init
→˓', 'egm_step', 'interpolate', 'transfers', 'maximum', 'percentile', 'skills_grid',
→˓'skills_stationary', 'skills_transition', 'a_grid', 'func_backw', 'func_forw', 'func_
→˓forw_stst', 'func_eqns', 'sigma_c', 'sigma_l', 'theta', 'psi', 'phi_pi', 'phi_y', 'rho
→˓', 'rho_beta', 'rho_r', 'rho_z', 'y', 'y_prod', 'C', 'pi', 'beta', 'B', 'w', 'n', 'div
→˓', 'z', 'Rstar', 'Rr', 'Rn', 'R', 'tax', 'WaPrime', 'init_run'])

23

econpizza, Release 0.6.3

24 Chapter 7. Under the hood

CHAPTER

EIGHT

QUICKSTART

Take a small-scale nonlinear New Keynesian model with ZLB as a starting point, which is provided as an example (find
the yaml file here). Here is how to simulate it and plot nonlinear impulse responses. Start with some misc imports and
load the package:

[1]: import matplotlib.pyplot as plt
import econpizza as ep

only necessary if you run this in a jupyter notebook:
%matplotlib inline

Next, load the model and solve for the steady state.

[2]: # the path to the example YAML
example_nk = ep.examples.nk

load the NK model
mod = ep.load(example_nk)
_ = mod.solve_stst()

WARNING:jax._src.xla_bridge:No GPU/TPU found, falling back to CPU. (Set TF_CPP_MIN_LOG_
→˓LEVEL=0 and rerun for more info.)

(load:) Parsing done.
Iteration 1 | max. error 7.89e-01 | lapsed 0.4894
Iteration 2 | max. error 5.07e-01 | lapsed 0.5595

(solve_stst:) Steady state found (0.69372s). The solution converged.

Finally, set a 4% discount factor shock and simulate it:

[3]: # shock the discount factor by 4%
shk = ('e_beta', .04)

find the nonlinear trajectory
x, flag = mod.find_path(shock=shk)

Iteration 1 | max error 1.71e-01 | lapsed 0.7477s
Iteration 2 | max error 3.89e-01 | lapsed 0.7514s
Iteration 3 | max error 2.35e-01 | lapsed 0.7544s
Iteration 4 | max error 2.50e-01 | lapsed 0.7573s
Iteration 5 | max error 6.81e-02 | lapsed 0.7601s
Iteration 6 | max error 2.14e-02 | lapsed 0.7629s
Iteration 7 | max error 5.58e-06 | lapsed 0.7656s

(continues on next page)

25

https://github.com/gboehl/econpizza/blob/master/econpizza/examples/nk.yml
https://github.com/gboehl/econpizza/blob/master/econpizza/examples/nk.yml

econpizza, Release 0.6.3

(continued from previous page)

Iteration 8 | max error 3.97e-12 | lapsed 0.7683s
(find_path:) Stacking done (0.886s).

The rest is plotting. . .

[4]: # plotting
fig, axs = plt.subplots(2,2)
for i,v in enumerate(('y', 'pi', 'r', 'beta')):

axs.flatten()[i].plot(x[:35,mod['variables'].index(v)])
axs.flatten()[i].set_xlabel(v)

fig.tight_layout()

The impulse responses are the usual dynamics of a nonlinear DSGE model with the zero-lower bound on nominal
interest rates.

Alternatively to specifying a shock, you can instead provide the initial conditions:

[5]: # use the jax implementation of numpy
import jax.numpy as jnp

get the steady state as initial condion
x0 = mod['stst'].copy()

(continues on next page)

26 Chapter 8. Quickstart

econpizza, Release 0.6.3

(continued from previous page)

and emulate again a 4% shock
x0['beta'] *= 1.04

solving...
x, flag = mod.find_path(init_state=x0.values())

plotting...
plt.figure(figsize=(7,3))
plt.plot(100*jnp.log(x[:35,mod['variables'].index('r')]))
plt.title('Nominal interest rate')

Iteration 1 | max error 1.51e-01 | lapsed 0.0034s
Iteration 2 | max error 2.92e-01 | lapsed 0.0066s
Iteration 3 | max error 1.57e-01 | lapsed 0.0095s
Iteration 4 | max error 3.66e-02 | lapsed 0.0124s
Iteration 5 | max error 3.93e-03 | lapsed 0.0151s
Iteration 6 | max error 3.90e-05 | lapsed 0.0177s
Iteration 7 | max error 5.68e-10 | lapsed 0.0203s

(find_path:) Stacking done (0.092s).

[5]: Text(0.5, 1.0, 'Nominal interest rate')

27

econpizza, Release 0.6.3

28 Chapter 8. Quickstart

CHAPTER

NINE

RANK TUTORIAL

Let us dive a bit deeper into the functionalities of the package by looking at a nonlinear medium scale DSGE model in
the style of Smets & Wouters (2003,2007). The model features Rothemberg instead of Calvo pricing, the zero-lower
bound on the nominal interest rate, and downwards nominal wage rigidity. The full model specification can be found
in the appendix of the original paper, whereas the yaml file can be found here.

Start with some misc imports and load the package. The rest of these tutorials rely on the grgrlib for plotting, which
can be installed via the official repositories (”pip install grgrlib”).

[1]: import jax.numpy as jnp # use jax.numpy instead of normal numpy
from grgrlib import grplot # nice backend for batch plotting with matplotlib
import econpizza as ep # pizza
import matplotlib.pyplot as plt

only necessary if you run this in a jupyter notebook:
%matplotlib inline

The YAML file called dsge.yml is, together with a few other examples, provided with the package and can be found
in this folder.

These examples can be imported from the econpizza.examples submodule.

[2]: # the path to the example YAML
example_dsge = ep.examples.dsge

This is nothing else than the local path to the YAML file:

[3]: print(example_dsge)

/home/gboehl/github/econpizza/econpizza/examples/dsge.yml

Let us make use of the functionality to parse the model before loading it, so that we can make some manual adjustments.
This is especially useful if we want to loop over different parameter values.

[4]: model_dict = ep.parse(example_dsge)
model_dict.keys()

[4]: dict_keys(['name', 'description', 'variables', 'parameters', 'shocks', 'equations',
→˓'steady_state', 'path', 'vars'])

model_dict now contains all information on the model. Let’s, for example, change the sensitivity of the monetary
policy rule w.r.t. inflation, and then load the model. Note that I’m loading model_dict instead of the path to the
YAML. ep.load would accept both as input, but of course only model_dict contains the changed parameter value.

29

https://gregorboehl.com/live/hank_speed_boehl.pdf
https://github.com/gboehl/econpizza/blob/master/econpizza/examples/dsge.yml
https://github.com/gboehl/econpizza/tree/master/econpizza/examples

econpizza, Release 0.6.3

[5]: model_dict['steady_state']['fixed_values']['phi_pi'] = 2.
load the model
mod = ep.load(model_dict)
type(mod)

(load:) Parsing done.

[5]: econpizza.__init__.PizzaModel

mod is now an instance of the class PizzaModel, which is the generic model class. Note that this still contains the
original dictionary together with some compiled information:

[6]: mod.keys()

[6]: dict_keys(['name', 'description', 'variables', 'parameters', 'shocks', 'equations',
→˓'steady_state', 'path', 'vars', 'context', 'cache', 'func_strings'])

Lets find the steady state.

[7]: _ = mod.solve_stst()

Iteration 1 | max. error 1.90e+00 | lapsed 1.5861
Iteration 2 | max. error 2.31e+00 | lapsed 1.6636
Iteration 3 | max. error 9.71e-01 | lapsed 1.6644
Iteration 4 | max. error 1.13e-01 | lapsed 1.6650
Iteration 5 | max. error 4.88e-02 | lapsed 1.6656
Iteration 6 | max. error 1.79e-02 | lapsed 1.6662
Iteration 7 | max. error 4.54e-03 | lapsed 1.6668
Iteration 8 | max. error 4.67e-04 | lapsed 1.6674
Iteration 9 | max. error 6.07e-06 | lapsed 1.6680

(solve_stst:) Steady state found (1.9064s). The solution converged.

Note that the result gets cached and will not be re-evaluated if called again (this can be bypassed by using the
force=True flag in solve_stst()).

[8]: _ = mod.solve_stst()

(solve_stst:) Steady state already known.

. . . but you could change a parameter or steady state value and reevaluate again:

[9]: model_dict['steady_state']['fixed_values']['sigma_c'] = 1.5
load the model
mod = ep.load(model_dict)
newton_dict = mod.solve_stst()

(load:) Parsing done.
Iteration 1 | max. error 1.90e+00 | lapsed 1.4342
Iteration 2 | max. error 2.31e+00 | lapsed 1.4352
Iteration 3 | max. error 9.71e-01 | lapsed 1.4358
Iteration 4 | max. error 1.13e-01 | lapsed 1.4365
Iteration 5 | max. error 4.88e-02 | lapsed 1.4371
Iteration 6 | max. error 1.79e-02 | lapsed 1.4377
Iteration 7 | max. error 4.54e-03 | lapsed 1.4383
Iteration 8 | max. error 4.67e-04 | lapsed 1.4389
Iteration 9 | max. error 6.07e-06 | lapsed 1.4395

(solve_stst:) Steady state found (1.5254s). The solution converged.

30 Chapter 9. RANK Tutorial

econpizza, Release 0.6.3

Also note that this was much faster thant the first run above, because the function solve_stst() is now cached. This
makes it much faster to try out different steady state values.

The object newton_dict contains the results from the Newton-based root finding, which may be interesting for de-
bugging (you must use the raise_errors=False flag to avoid raising an error and to get the dictionary):

[10]: model_dict_broken = ep.copy(model_dict) # ep.copy is an alias for deepcopy
model_dict_broken['steady_state']['fixed_values']['mc'] = 200. # so wrong!
load the model
mod = ep.load(model_dict_broken)
newton_dict = mod.solve_stst(raise_errors=False)

(load:) Loading cached model.
Iteration 1 | max. error 1.20e+03 | lapsed 0.0004
Iteration 2 | max. error 1.20e+03 | lapsed 0.0011
Iteration 3 | max. error 1.20e+03 | lapsed 0.0016
Iteration 4 | max. error 1.20e+03 | lapsed 0.0022
Iteration 5 | max. error 1.20e+03 | lapsed 0.0027
Iteration 6 | max. error 1.26e+03 | lapsed 0.0033
Iteration 7 | max. error 1.89e+04 | lapsed 0.0038
Iteration 8 | max. error 2.38e+04 | lapsed 0.0044
Iteration 9 | max. error 1.20e+03 | lapsed 0.0049
Iteration 10 | max. error 1.20e+03 | lapsed 0.0055
Iteration 11 | max. error 1.20e+03 | lapsed 0.0060
Iteration 12 | max. error 1.20e+03 | lapsed 0.0066
Iteration 13 | max. error 1.20e+03 | lapsed 0.0071
Iteration 14 | max. error 1.20e+03 | lapsed 0.0076

(solve_stst:) Steady state FAILED (max. error is 1.20e+03 in eqn. 13). Maximum number of␣
→˓15 iterations reached.

This failed because marginal costs are a function of the values of theta. While in this case the reason is clear, in other
cases you could have a look at the Newton dictionary to debug this:

[11]: print(newton_dict.keys())

dict_keys(['success', 'message', 'x', 'niter', 'fun', 'jac', 'det', 'initial_values'])

Let us better return to the working model. The model has many shocks. We’ll go for a risk premium shock, e_u.

[12]: mod = ep.load(model_dict)
_ = mod.solve_stst()
print(mod['shocks'])

shock the risk premium
shk = ('e_u', .01)

(load:) Loading cached model.
(solve_stst:) Steady state already known.
['e_beta', 'e_z', 'e_g', 'e_p', 'e_w', 'e_i', 'e_r', 'e_u']

Simulation works as before. . .

[13]: # find the nonlinear trajectory
x, flag = mod.find_path(shock=shk)

Iteration 1 | max error 2.24e+00 | lapsed 2.3029s
Iteration 2 | max error 7.13e-02 | lapsed 2.3286s

(continues on next page)

31

econpizza, Release 0.6.3

(continued from previous page)

Iteration 3 | max error 3.33e-02 | lapsed 2.3434s
Iteration 4 | max error 3.10e-02 | lapsed 2.3574s
Iteration 5 | max error 2.39e-02 | lapsed 2.3715s
Iteration 6 | max error 1.37e-02 | lapsed 2.3856s
Iteration 7 | max error 2.72e-03 | lapsed 2.3997s
Iteration 8 | max error 1.61e-05 | lapsed 2.4138s
Iteration 9 | max error 6.39e-11 | lapsed 2.4279s

(find_path:) Stacking done (2.596s).

Now x contains the trajectory in response to the shock. Let us plot this. Note that the dynamics are somewhat “twisted”
because of the downwards nominal wage rigidigy.

[14]: _ = grplot(x[:30], labels=mod['variables'])

32 Chapter 9. RANK Tutorial

econpizza, Release 0.6.3

33

econpizza, Release 0.6.3

34 Chapter 9. RANK Tutorial

econpizza, Release 0.6.3

35

econpizza, Release 0.6.3

36 Chapter 9. RANK Tutorial

econpizza, Release 0.6.3

37

econpizza, Release 0.6.3

38 Chapter 9. RANK Tutorial

CHAPTER

TEN

ONE-ASSET HANK TUTORIAL

The package supports heterogeneous agent models with and without porfolio chocie (i.e., with one asset and two assets,
respectively). Start again with misc imports and load the package:

[1]: import jax.numpy as jnp # use jax.numpy instead of normal numpy
from grgrlib import figurator, grplot # a nice backend for batch plotting with matplotlib
import econpizza as ep # pizza
import matplotlib.pyplot as plt

only necessary if you run this in a jupyter notebook:
%matplotlib inline

We now look at the one-asset HANK, which is documented in the appendix of in the paper. The YAML file, with many
comments, can be found in the examples folder.

Start with loading the example file:

[2]: example_hank = ep.examples.hank

As before, example_hank is nothing else than the path to the YAML file:

[3]: print(example_hank)

/home/gboehl/github/econpizza/econpizza/examples/hank_with_comments.yml

Parse the example hank model from the yaml and compile the model:

[4]: # parse model
hank1_dict = ep.parse(example_hank)
compile the model
hank1 = ep.load(hank1_dict)

(load:) Parsing done.

The first step creates a raw dictionary from the yaml. The second translates everything to a model instance with
compiled and tested functions. If something specific in your model does not work, you should have been informed by
now.

Lets continue with the steady state:

[5]: stst_result = hank1.solve_stst()

Iteration 1 | max. error 7.48e-01 | lapsed 5.2069
Iteration 2 | max. error 7.56e-02 | lapsed 5.3326
Iteration 3 | max. error 7.36e-04 | lapsed 5.3654

(continues on next page)

39

https://gregorboehl.com/hank_speed_boehl.pdf
https://github.com/gboehl/econpizza/blob/master/econpizza/examples/hank_with_comments.yml

econpizza, Release 0.6.3

(continued from previous page)

Iteration 4 | max. error 7.06e-08 | lapsed 5.3978
(solve_stst:) Steady state found (5.6612s). The solution converged.

By default, the final message is rather verbose. The rank of the Jacobian is important because quite often, the steady
state is indetermined and some steady state values need to be fixed in advance. Econpizza can deal with that by using
the Pseudoinverse during the Newton steps. Fixing some of the variables is also what I did here. Since the function
has 12 degrees of freedom and 6 fixed variables for a total of 18 variables, we’re fine and the steady state solver nicely
converges.

The resulting stst_result is similar to the return object from scipy.optimize.root and contains all sorts of nice
information to help you debugging if you have problems finding the steady state:

[6]: print(stst_result.keys())

dict_keys(['success', 'message', 'x', 'niter', 'fun', 'jac', 'aux', 'det', 'initial_
→˓values'])

[7]: print(stst_result['fun']) # the steady state function at the solution x

[-2.38671438e-09 1.77635684e-15 2.94209102e-15 0.00000000e+00
-2.77555756e-17 0.00000000e+00 -2.22044605e-16 2.38671397e-09
0.00000000e+00 4.65979351e-17 0.00000000e+00 0.00000000e+00
8.35687075e-12 0.00000000e+00 0.00000000e+00 0.00000000e+00
0.00000000e+00]

The pizza automatically stores the steady state values as a dictionary in the model object:

[8]: hank1['stst']

[8]: {'B': Array(5.6, dtype=float64),
'beta': Array(0.98, dtype=float64),
'C': Array(1., dtype=float64),
'div': Array(0.23927423, dtype=float64),
'n': Array(0.91287093, dtype=float64),
'pi': Array(1., dtype=float64),
'R': Array(1.00351564, dtype=float64),
'Rn': Array(1.00351564, dtype=float64),
'Rr': Array(1.00351564, dtype=float64),
'Rstar': Array(1.00351564, dtype=float64),
'tax': Array(0.01968759, dtype=float64),
'Top10A': Array(0.39757979, dtype=float64),
'Top10C': Array(0.20057934, dtype=float64),
'w': Array(0.83333333, dtype=float64),
'y': Array(1., dtype=float64),
'y_prod': Array(1., dtype=float64),
'z': Array(1.09544512, dtype=float64)}

Let us, out of curiousity, have a look at the steady state distribution. It is stored under hank1['steady_state'].
Note that at the same location, also steady state decisions (the value function) are stored.

[9]: dist = hank1['steady_state']['distributions'][0]
grid = hank1['context']['a_grid']

hank1[context] is a dictionary that also stores some other model specific variables. Better have a look youself if you
care. For those who really miss Dynare and the global access to model variables and objects, you can simply add the

40 Chapter 10. One-Asset HANK Tutorial

econpizza, Release 0.6.3

model context to globals:

[10]: globals().update(hank1['context'])
print(a_grid) # this is now available while it was not before

[0.00000000e+00 2.85761999e-02 6.04187966e-02 9.59011550e-02
1.35439317e-01 1.79496881e-01 2.28590436e-01 2.83295620e-01
3.44253869e-01 4.12179939e-01 4.87870284e-01 5.72212399e-01
6.66195222e-01 7.70920734e-01 8.87616874e-01 1.01765194e+00
1.16255064e+00 1.32401196e+00 1.50392908e+00 1.70441160e+00
1.92781022e+00 2.17674438e+00 2.45413291e+00 2.76322829e+00
3.10765474e+00 3.49145079e+00 3.91911658e+00 4.39566661e+00
4.92668860e+00 5.51840896e+00 6.17776579e+00 6.91249027e+00
7.73119729e+00 8.64348644e+00 9.66005463e+00 1.07928214e+01
1.20550689e+01 1.34615974e+01 1.50288988e+01 1.67753502e+01
1.87214295e+01 2.08899549e+01 2.33063532e+01 2.59989575e+01
2.89993393e+01 3.23426792e+01 3.60681788e+01 4.02195210e+01
4.48453815e+01 5.00000000e+01]

Let’s plot the distribution:

[11]: from grgrlib import grbar3d # a nice backend to 3D-plots with matplotlib

ax, _ = grbar3d(dist, xedges=jnp.arange(1,5), yedges=grid, figsize=(9,7), depth=.5) #␣
→˓create 3D plot
set axis labels
ax.set_xlabel('skills')
ax.set_ylabel('wealth')
ax.set_zlabel('share')
rotate
ax.view_init(azim=140)

41

econpizza, Release 0.6.3

Nice. As expected, agents with higher income hold more assets, and vice versa. Note however that quantities are here
given as shares of nodes on a log-grid (rather than true densities), meaning that shares for larger values on the grid are
overrepresented.

Let’s continue with calculating some impulse response functions. We’ll have a look at a shock to the households’
discount factor 𝛽.

Find the nonlinear IRFs (we will treat linear IRFs in the next tutorial):

[12]: # define the shock as (shock_name, value)
shock = ('e_beta', 0.005)
simulate
xst, flags = hank1.find_path(shock)

(get_derivatives:) Derivatives calculation done (6.270s).
(get_jacobian:) Jacobian accumulation and decomposition done (1.211s).

Iteration 1 | fev. 1 | max. error 7.02e-02 | dampening 1.000
Iteration 2 | fev. 15 | max. error 1.68e-02 | dampening 1.000

(continues on next page)

42 Chapter 10. One-Asset HANK Tutorial

econpizza, Release 0.6.3

(continued from previous page)

Iteration 3 | fev. 26 | max. error 1.11e-03 | dampening 1.000
Iteration 4 | fev. 29 | max. error 9.26e-06 | dampening 1.000
Iteration 5 | fev. 34 | max. error 5.85e-07 | dampening 1.000
Iteration 6 | fev. 40 | max. error 3.50e-08 | dampening 1.000
Iteration 7 | fev. 46 | max. error 1.77e-09 | dampening 1.000 | lapsed 11.0975s

(find_path:) Stacking done (18.775s). The solution converged.

Alternatively, take the steady state as the initial value, and alter the initial value of 𝛽 directly:

[13]: # this is a dict containing the steady state values
x0 = hank1['stst'].copy()
setting a large shock on the discount factor
x0['beta'] *= 1.009

simulate again with the different initial state:
xst, flags = hank1.find_path(init_state=x0.values())

Iteration 1 | fev. 1 | max. error 1.13e-01 | dampening 1.000
Iteration 2 | fev. 32 | max. error 4.76e-02 | dampening 1.000
Iteration 3 | fev. 63 | max. error 1.09e-01 | dampening 0.619
Iteration 4 | fev. 94 | max. error 3.84e-03 | dampening 1.000
Iteration 5 | fev. 108 | max. error 2.20e-04 | dampening 1.000
Iteration 6 | fev. 132 | max. error 9.08e-06 | dampening 1.000
Iteration 7 | fev. 157 | max. error 8.16e-07 | dampening 1.000
Iteration 8 | fev. 182 | max. error 7.31e-08 | dampening 1.000
Iteration 9 | fev. 207 | max. error 6.54e-09 | dampening 1.000 | lapsed 6.0853s

(find_path:) Stacking done (6.172s). The solution converged.

That went smoothly. Again, you will get (hopefully) meaningful and (hopefully) infomative final messages. Note that
the second run was much faster than the first one. This is because the steady state sequence space Jacobian was already
calculated and all functions were already compiled.

Let’s plot only a few of the variables for space restrictions: output 𝑦𝑡 (Y), inflation 𝜋𝑡 (pi), the nominal interst rate 𝑅𝑡

(Rn), and the percentage share of wealth held by the top-10% richest, Top10A.

[14]: # this is how *all* aggregate variables could be plotted:
#grplot(xst[:30], labels=hank1['variables'])

variables = 'y', 'pi', 'R', 'Top10A'
inds = [hank1['variables'].index(v) for v in variables] # get indices of variables

_ = grplot(xst[:30, inds], labels=variables)

43

econpizza, Release 0.6.3

See how the effective lower bound is binding for quite a while, and how the endogenous distribution adjusts accordingly.

In case you want to study the distributional dynamics in detail, you can also back out the exact nonlinear sequences of
the disaggregated variables and their distribution. That is, their complete history given the trajectory xst of aggregated
variables.

[15]: # note that the sequence of aggregated variables is the input
het_vars = hank1.get_distributions(xst)

The function will return a dictionary with the disaggregated variables (outputs of the decision stage) and the distri-
bution as key:

[16]: print(het_vars.keys())

dict_keys(['a', 'c', 'dist'])

Each of the objects has shape *distribution shape, number_of_periods:

[17]: print(het_vars['a'].shape)

(4, 50, 199)

For example, we can use this to plot the distribution of wealth over time:

44 Chapter 10. One-Asset HANK Tutorial

econpizza, Release 0.6.3

[18]: dist = het_vars['dist']
a_grid = hank1['context']['a_grid']
plot
ax, _ = grbar3d(dist[...,:30].sum(0), xedges=a_grid, yedges=jnp.arange(30), figsize=(9,
→˓7), depth=.5, width=.5, alpha=.5)
set axis labels
ax.set_xlabel('wealth')
ax.set_ylabel('time')
ax.set_zlabel('share')
rotate
ax.view_init(azim=40)

The graph shows that the discount factor shock (and the ZLB) mainly affects the wealth of the housholds which hold
no or very few assets, giving incentive to hold more assets for a short period of time. Again, since these are shares of
nodes on a log-grid (rather than true densities), the shares for larger values on the grid are overrepresented.

45

econpizza, Release 0.6.3

46 Chapter 10. One-Asset HANK Tutorial

CHAPTER

ELEVEN

TWO-ASSET-HANK TUTORIAL

Again start with misc imports and load the package:

[1]: import jax.numpy as jnp
from grgrlib import figurator, grplot
import econpizza as ep # pizza
import matplotlib.pyplot as plt

only necessary if you run this in a jupyter notebook:
%matplotlib inline

The provided example is the medium-scale two-asset model from the paper, which is again documented in the appendix.
The YAML file can also be found in the examples folder. This model features a portfolio choice problem for households
and all the bells ans whistles of the medium scale DSGE model.

[2]: example_hank2 = ep.examples.hank2
parse model
hank2_dict = ep.parse(example_hank2)
compile the model
hank2 = ep.load(hank2_dict)

(load:) Parsing done.

[3]: stst_result = hank2.solve_stst()

Iteration 1 | max. error 3.64e+01 | lapsed 16.1393
(solve_stst:) Steady state found (19.409s). The solution converged.

Again, look at a discount factor shock and calculate the pefect foresight solution:

[4]: # this is a dict containing the steady state values
x0 = hank2['stst'].copy()
setting a shock on the discount factor
x0['beta'] *= 1.01

But let us this time start with a linear IRFs, just because we can:

[5]: xlin, flags = hank2.find_path_linear(init_state=x0.values())

(get_derivatives:) Derivatives calculation done (13.100s).
(get_jacobian:) Jacobian accumulation and decomposition done (6.249s).
(find_path_linear:) Linear solution done (26.710s).

47

https://gregorboehl.com/hank_speed_boehl.pdf
https://github.com/gboehl/econpizza/blob/master/econpizza/examples/hank2.yml

econpizza, Release 0.6.3

[6]: variables = 'y', 'C', 'y', 'pi', 'Rn', 'A', 'B', 'w', 'beta'
inds = [hank2['variables'].index(v) for v in variables]

figs, axs = figurator(3,3, figsize=(12,8))
_ = grplot(xlin[:30, inds], labels=variables, ax=axs)

Great. Finally, we can compare this with the fully nonlinear responses:

[7]: xst, flags = hank2.find_path(init_state=x0.values())

Iteration 1 | fev. 1 | max. error 4.35e-01 | dampening 1.000
Iteration 2 | fev. 3 | max. error 5.81e-03 | dampening 1.000
Iteration 3 | fev. 4 | max. error 9.66e-07 | dampening 1.000
Iteration 4 | fev. 5 | max. error 3.31e-10 | dampening 1.000 | lapsed 25.7429s

(find_path:) Stacking done (25.885s). The solution converged.

[8]: figs, axs = figurator(3,3, figsize=(12,8))
_ = grplot((xst[:30, inds], xlin[:30, inds]), labels=variables, ax=axs, legend=(
→˓'nonlinear', 'linear'))
_ = axs[0].legend(fontsize=16)

48 Chapter 11. Two-Asset-HANK Tutorial

econpizza, Release 0.6.3

49

econpizza, Release 0.6.3

50 Chapter 11. Two-Asset-HANK Tutorial

INDEX

F
find_path() (in module econpizza.PizzaModel), 17

G
get_distributions() (in module econ-

pizza.PizzaModel), 18

L
load() (in module econpizza), 14

N
newton_for_banded_jac() (in module econ-

pizza.utilities.newton), 18
newton_for_jvp() (in module econ-

pizza.utilities.newton), 18

P
parse() (in module econpizza), 14
PizzaModel (class in econpizza), 14

S
solve_stst() (in module econpizza.PizzaModel), 15

51

	Overview: Econpizza
	How to cite
	Installation
	Specifying models
	The YAML file
	YAML: representative agent models
	YAML: heterogeneous agent models
	Model parsing

	The steady state
	Nonlinear simulations
	Under the hood
	Quickstart
	RANK Tutorial
	One-Asset HANK Tutorial
	Two-Asset-HANK Tutorial
	Index

